Silver Nanoparticles Entrapped Chitosan:Poly(Vinyl Alcohol) Thin Films Via In Situ Synthesis



chitosan, poly(vinyl alcohol), solvent casting, film, silver nanoparticles


Thin films are economical materials that can be produced easily and quickly with the potential to be used for many different applications such as active packaging, tissue engineering products, energy, water treatment and sensors. One of the most important features that these materials should have is their ease of application as well as their ability to exhibit microbial activity. In this context, silver nanoparticles (AgNPs) are unique materials. From this point of view, in our study, we aimed to synthesize AgNPs on polymer films easily and quickly. AgNPs entrapped chitosan/poly(vinyl alcohol) (CTSN:PVA) thin films were prepared by solvent casting of polymers and in situ synthesis of nanoparticles, respectively. The formation of AgNPs was confirmed by determining the molecular structure, morphology and wettability of films. The internal structure was evaluated using Fourier-transform infrared spectroscopy (FTIR), the morphology was viewed by optical microscope and wettability was determined using contact angle measurements. The successful formation of AgNPs synthesis on CTSN:PVA films will impart high microbial activity to plain films, making them up-and-coming materials for biomedical applications and electrochemical disinfection.


Abureesh, M. A., Oladipo, A. A., Gazi, M. (2016). Facile synthesis of glucose-sensitive chitosan-poly(vinyl alcohol) hydrogel: Drug release optimization and swelling properties. Int. J. Biol. Macromol., 90, 75–80.

Cano, A., Cháfer, M., Chiralt, A., González-Martínez, C. (2016). Development and characterization of active films based on starch-PVA, containing silver nanoparticles. Food Packag. Shelf Life, 10, 16–24.

Capello, C., Leandro, G. C., Gagliardi, T. R., Valencia, G. A. (2021). Intelligent Films from Chitosan and Biohybrids Based on Anthocyanins and Laponite®: Physicochemical Properties and Food Packaging Applications. J. Polym. Environ., 29(12) 3988–3999.

Ceylan, S., Küçükosman, R., Yurt, F., Özel, D., Öztürk, İ., Demir, D., Ocakoglu, K. (2023). Antimicrobial activity enhancement of PVA/chitosan films with the additive of CZTS quantum dots. Polym. Bull., 80(10), 11273–11293.

Ceylan, S., Sert, B., Yurt, F., Tunçel, A., Öztürk, İ., Demir, D., Ocakoglu, K. (2022). Development of antimicrobial nanocomposite scaffolds via loading CZTSe quantum dots for wound dressing applications. Biomed. Mater., 17(6), 065011.

Chang, J., Toga, K. B., Paulsen, J. D., Menon, N., Russell, T. P. (2018). Thickness dependence of the Young’s modulus of polymer thin films. Macromol., 51(17), 6764-6770.

Chaudhari, V. P., Roy, S. M., Chaudhuri, T. K., Roy, D. R. (2022). Synthesis, characterization and significant antimicrobial properties of CZTS nanoparticles against pathogenic strains. J. Indian Chem. Soc., 99(3), 100351.

Chen, C. H., Lin, Y. C., Mao, C. F., Liao, W. T. (2019). Green synthesis, size control, and antibacterial activity of silver nanoparticles on chitosan films. Res. Chem. Intermed., 45, 4463-4472.

Chopra, H., Bibi, S., Kumar, S., Khan, M. S., Kumar, P., Singh, I. (2022). Preparation and evaluation of chitosan/PVA based hydrogel films loaded with honey for wound healing application. Gels, 8(2), 111.

Constantin, M., Lupei, M., Bucatariu, S. M., Pelin, I. M., Doroftei, F., Ichim, D. L., Daraba, O. M., Fundueanu, G. (2022). PVA/Chitosan Thin Films Containing Silver Nanoparticles and Ibuprofen for the Treatment of Periodontal Disease. Polymers, 15(1), 4.

Demir, D., Özdemir, S., Yalçın, M. S., Bölgen, N. (2020). Chitosan cryogel microspheres decorated with silver nanoparticles as injectable and antimicrobial scaffolds. Int. J. Polym. Mater., 69(14), 919-927.

Divya, S., Oh, T. H. (2022). Polymer nanocomposite membrane for wastewater treatment: A critical review. Polymers, 14(9), 1732.

Eğri, Ö., Erdemir, N. (2019). Production of Hypericum perforatum oil-loaded membranes for wound dressing material and in vitro tests. Artif. Cells Nanomed. Biotechnol., 47(1), 1404-1415.

Elkasabgy, N. A., Mahmoud, A. A. (2019). Fabrication strategies of scaffolds for delivering active ingredients for tissue engineering. AAPS Pharm. Sci. Tech., 20(7), 256.

Eti, I. A., Khatun, M., Khatun, M. A., Rahman, M. O., Anis-Ul-Haque, K. M., Alam, M. J. (2023). Removal of Dye from Wastewater Using a Novel Composite Film Incorporating Nanocellulose. Adv. Polym. Technol., doi: 10.1155/2023/4431941.

Fahmy, R. A., Kotry, G. S., Ramadan, O. R. (2018). Periodontal regeneration of dehisence defects using a modified perforated collagen membrane. A comparative experimental study, Future Dental J., 4(2), 225–230.

Ghosal, K., Chandra, A., Praveen, G., Snigdha, S., Roy, S., Agatemor, C., Thomas, S., Provaznik, I. (2018). Electrospinning over Solvent Casting: Tuning of Mechanical Properties of Membranes. Scientific Rep., 8(1), 1–9.

Giwa, A., Hasan, S. W., Yousuf, A., Chakraborty, S., Johnson, D. J., Hilal, N. (2017). Biomimetic membranes: A critical review of recent progress. Desalination, 420, 403–424.

Harsányi, G. (2000). Polymer films in sensor applications: A review of present uses and future possibilities. Sensor Review, 20(2), 98–105.

Jiang, Y., Minett, M., Hazen, E., Wang, W., Alvarez, C., Griffin, J., Jiang, N., Chen, W. (2022). New Insights into Spin Coating of Polymer Thin Films in Both Wetting and Nonwetting Regimes, Langmuir. J. Am. Chem. Soc., 38(41), 12702–12710.

Kandil, H., Abdelhamid, A. E., Moghazy, R. M., Amin, A. (2022). Functionalized PVA film with good adsorption capacity for anionic dye. Polym. Eng. Sci., 62(1), 145–159.

Kraśniewska, K., Galus, S., Gniewosz, M. (2020). Biopolymers-Based Materials Containing Silver Nanoparticles as Active Packaging for Food Applications–A Review. Int. J. Mol. Sci., 21 (3), 698.

Lai, W. F. (2022). Design of Polymeric Films for Antioxidant Active Food Packaging. Int. J. Mol. Sci., 23(1), 12.

Li, P.-C., Liao, G., Kumar, S. R., Shih, C.-M., Yang, C.-C., Wang, D.-M., Lue, S. J. (2016). Fabrication and Characterization of Chitosan Nanoparticle-Incorporated Quaternized Poly(Vinyl Alcohol) Composite Membranes as Solid Electrolytes for Direct Methanol Alkaline Fuel Cells. Electrochimica Acta, 187, 616–628.

Mahesh, B., Kathyayani, D., Channe Gowda, D., Mrutunjaya, K. (2020). Blends of synthetic plastic-derived polypeptide with Hydroxypropylmethylcellulose and polyvinyl alcohol: unraveling the specific interaction parameters, morphology and thermal stability of the polymers couple. J. Polym. Res., 27(9), 1–15.

Meiron, T. S., Saguy, I. S. (2007). Wetting properties of food packaging. Food Res. Int., 40(5), 653–659.

Menzies, K. L., Jones, L. (2010). The impact of contact angle on the biocompatibility of biomaterials. Optom. Vis. Sci., 87(6), 387–399.

Mincke, S., Asere, T. G., Verheye, I., Folens, K., Vanden Bussche, F., Lapeire, L., Verbeken, K., Van Der Voort, P., Tessema, D. A., Fufa, F., Du Laing, G., Stevens, C. V. (2019). Functionalized chitosan adsorbents allow recovery of palladium and platinum from acidic aqueous solutions, Green Chemistry. R. Soc. Chem., 21 (9), 2295–2306.

Olvera Bernal, R. A., Olekhnovich, R. O., Uspenskaya, M. V. (2023). Chitosan/PVA Nanofibers as Potential Material for the Development of Soft Actuators. Polymers, 15(9), 2037.

Park, S., Kim, Y., Jung, H., Park, J. Y., Lee, N., Seo, Y. (2017). Energy harvesting efficiency of piezoelectric polymer film with graphene and metal electrodes. Scientific Rep., 7(1), 1–8.

Pereira, R. F., Barrias, C. C., Bártolo, P. J., Granja, P. L. (2018). Cell-instructive pectin hydrogels crosslinked via thiol-norbornene photo-click chemistry for skin tissue engineering. Acta Biomater., 66, 282–293.

Perez-Calderon, J., Marin-Silva, D. A., Zaritzky, N., Pinotti, A. (2023). Eco-friendly PVA-chitosan adsorbent films for the removal of azo dye Acid Orange 7: Physical cross-linking, adsorption process, and reuse of the material. Adv. Ind. Eng. Polym. Res., 6(3), 239–254.

Prest, W. M., Luca, D. J. (1980). The alignment of polymers during the solvent‐coating process. J. Appl. Phys., 51(10), 5170–5174.

Rodriguez, I.A., Selders, G.S., Fetz, A.E., Gehrmann, C.J., Stein, S.H., Evensky, J.A., Green, M.S., Bowlin, G.L. (2018). Barrier membranes for dental applications: A review and sweet advancement in membrane developments. Mouth and Teeth, 2(1), 1–9.

Rossini, P., Colpo, P., Ceccone, G., Jandt, K. D., Rossi, F. (2003). Surfaces engineering of polymeric films for biomedical applications. Mater. Sci. Eng. C, 23(3), 353–358.

Şen, F., Demirbaş, Ö., Çalımlı, M. H., Aygün, A., Alma, M. H., Nas, M. S. (2018). The dye removal from aqueous solution using polymer composite films. App. Wat. Sci., 8(7), 1–9

Sola, A., Bertacchini, J., D’Avella, D., Anselmi, L., Maraldi, T., Marmiroli, S., Messori, M. (2019). Development of solvent-casting particulate leaching (SCPL) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. Mater. Sci. Eng. C, 96, 153–165






Biological Science